80 research outputs found

    Energy-dependent partial-wave analysis of all antiproton-proton scattering data below 925 MeV/c

    Full text link
    We present a new energy-dependent partial-wave analysis of all antiproton-proton elastic and charge-exchange scattering data below 925 MeV/c antiproton laboratory momentum. The long-range parts of the chiral one- and two-pion exchange interactions are included exactly. The short-range interactions, including the coupling to the mesonic annihilation channels, are parametrized by a complex boundary condition at a radius of r=1.2 fm. The updated database, which includes significantly more high-quality charge-exchange data, contains 3749 scattering data. The fit results in chi^2_min/N_df=1.048, where N_df=3578 is the number of degrees of freedom. We discuss the description of the experimental data and we present the antiproton-proton phase-shift parameters

    Axial-vector form factors of the baryon octet and chiral symmetry

    Get PDF
    We consider the axial-vector form factors of the baryon octet in flavor-SU(3) chiral perturbation theory. The baryon octet and decuplet and the pseudoscalar-meson octet are included as explicit degrees of freedom. We explore the use of on-shell meson and baryon masses in the one-loop contributions to the axial-vector form factors and focus on a consistent treatment in terms of chiral power counting. The convergence properties of such an approach are scrutinized. We discuss the potential for comparison to upcoming QCD lattice data.Comment: 57 pages, 4 figures, in the revised manuscript we extended the presentation considering now all relevant counterterm

    Enhancement factor for the electric dipole moment of the electron in the BaOH and YbOH molecules

    Get PDF
    Polyatomic polar molecules are promising systems for future experiments that search for violation of time-reversal and parity symmetries due to their advantageous electronic and vibrational structure, which allows laser cooling, full polarization of the molecule, and reduction of systematic effects [Kozyryev and Hutzler, Phys. Rev. Lett. 119, 133002 (2017)]. In this paper we investigate the enhancement factor of the electric dipole moment of the electron (E_(eff)) in the triatomic monohydroxide molecules BaOH and YbOH within the high-accuracy relativistic coupled cluster method. The recommended E_(eff) values of the two systems are 6.42 ± 0.15 and 23.4 ± 1.0 GV/cm, respectively. We compare our results with similar calculations for the isoelectronic diatomic molecules BaF and YbF, which are currently used in the experimental search for P,T-odd effects in molecules. The E_(eff) values prove to be very close, within about 1.5% difference in magnitude between the diatomic and the triatomic compounds. Thus, BaOH and YbOH have similar enhancements of the electron electric dipole moment, while benefiting from experimental advantages, and can serve as excellent candidates for next-generation experiments

    Enhanced P,T-violating nuclear magnetic quadrupole moment effects in laser-coolable molecules

    Get PDF
    Nuclear magnetic quadrupole moments (MQMs), such as intrinsic electric dipole moments of elementary particles, violate both parity and time-reversal symmetry and, therefore, probe physics beyond the standard model. We report on accurate relativistic coupled cluster calculations of the nuclear MQM interaction constants in BaF, YbF, BaOH, and YbOH. We elaborate on estimates of the uncertainty of our results. The implications of experiments searching for nonzero nuclear MQMs are discussed

    Enhancement factor for the electric dipole moment of the electron in the BaOH and YbOH molecules

    Get PDF
    Polyatomic polar molecules are promising systems for future experiments that search for violation of time-reversal and parity symmetries due to their advantageous electronic and vibrational structure, which allows laser cooling, full polarization of the molecule, and reduction of systematic effects [Kozyryev and Hutzler, Phys. Rev. Lett. 119, 133002 (2017)]. In this paper we investigate the enhancement factor of the electric dipole moment of the electron (E_(eff)) in the triatomic monohydroxide molecules BaOH and YbOH within the high-accuracy relativistic coupled cluster method. The recommended E_(eff) values of the two systems are 6.42 ± 0.15 and 23.4 ± 1.0 GV/cm, respectively. We compare our results with similar calculations for the isoelectronic diatomic molecules BaF and YbF, which are currently used in the experimental search for P,T-odd effects in molecules. The E_(eff) values prove to be very close, within about 1.5% difference in magnitude between the diatomic and the triatomic compounds. Thus, BaOH and YbOH have similar enhancements of the electron electric dipole moment, while benefiting from experimental advantages, and can serve as excellent candidates for next-generation experiments

    High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling

    Get PDF
    The NL-eEDM collaboration is building an experimental setup to search for the permanent electric dipole moment of the electron in a slow beam of cold barium fluoride molecules [Eur. Phys. J. D, 72, 197 (2018)]. Knowledge of molecular properties of BaF is thus needed to plan the measurements and in particular to determine an optimal laser-cooling scheme. Accurate and reliable theoretical predictions of these properties require incorporation of both high-order correlation and relativistic effects in the calculations. In this work theoretical investigations of the ground and the lowest excited states of BaF and its lighter homologues, CaF and SrF, are carried out in the framework of the relativistic Fock-space coupled cluster (FSCC) and multireference configuration interaction (MRCI) methods. Using the calculated molecular properties, we determine the Franck-Condon factors (FCFs) for the A2Π1/2X2Σ1/2+A^2\Pi_{1/2} \rightarrow X^2\Sigma^{+}_{1/2} transition, which was successfully used for cooling CaF and SrF and is now considered for BaF. For all three species, the FCFs are found to be highly diagonal. Calculations are also performed for the B2Σ1/2+X2Σ1/2+B^2\Sigma^{+}_{1/2} \rightarrow X^2\Sigma^{+}_{1/2} transition recently exploited for laser-cooling of CaF; it is shown that this transition is not suitable for laser-cooling of BaF, due to the non-diagonal nature of the FCFs in this system. Special attention is given to the properties of the A2ΔA'^2\Delta state, which in the case of BaF causes a leak channel, in contrast to CaF and SrF species where this state is energetically above the excited states used in laser-cooling. We also present the dipole moments of the ground and the excited states of the three molecules and the transition dipole moments (TDMs) between the different states.Comment: Minor changes; The following article has been submitted to the Journal of Chemical Physics. After it is published, it will be found at https://publishing.aip.org/resources/librarians/products/journals

    Systematic study and uncertainty evaluation of P, T-odd molecular enhancement factors in BaF

    Get PDF
    A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic molecules containing heavy elements experience enhanced sensitivity to parity (P) and time-reversal (T)-violating phenomena, such as the eEDM and the scalar-pseudoscalar (S-PS) interaction between the nucleons and the electrons, and are thus promising candidates for measurements. The NL-eEDM collaboration is preparing an experiment to measure the eEDM and S-PS interaction in a slow beam of cold BaF molecules [P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018)]. Accurate knowledge of the electronic structure parameters, Wd and Ws, connecting the eEDM and the S-PS interaction to the measurable energy shifts is crucial for the interpretation of these measurements. In this work, we use the finite field relativistic coupled cluster approach to calculate the Wd and Ws parameters in the ground state of the BaF molecule. Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ±0.12×1024Hzecm for Wd and 8.29 ± 0.12 kHz for W

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore